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An alternative derivation of the two-parameter family of solutions for a Hele-Shaw flow with surface
tension reported previously by Vasconcelos and Kadanoff [Phys. Rev. A 44, 6490 (1991)] is presented.
The method of solution given here is based on the formalism of the Schwarz function: an ordinary
differential equation for the Schwartz function of the moving interface is obtained and then solved.
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The primary goal of this paper is to present an alterna-
tive derivation of a class of exact solutions for Hele-Shaw
flows with surface tension, which was recently reported
by Vasconcelos and Kadanoff [1]. These solutions de-
scribe an interface with a bubblelike shape moving with a
constant velocity in an unbounded Hele-Shaw cell. The
interface however does not form a closed curve, and addi-
tional boundary conditions (“slip walls’’) must be intro-
duced for the solutions to be physically meaningful. In
spite of this somewhat arbitrary geometry these solutions
are nonetheless of interest because they are to date the
only known nontrivial explicit solutions to the Hele-Shaw
problem with surface tension [2]. One hopes that a better
understanding of such solutions might provide insights
into constructing exact solutions in more realistic setups,
such as the celebrated Saffman-Taylor finger in a channel
[3]. The finger solution was first observed in the experi-
ments of Saffman and Taylor [4] over 30 years ago, but an
analytical solution to the problem (with surface tension)
has not yet been found.

The solutions originally reported in Ref. [1] were ob-
tained in terms of a conformal mapping, z =H (w), that
maps the exterior of the unit circle (|w] > 1) in the auxili-
ary complex w plane onto the actual fluid region in the z
plane. In the conformal-mapping approach, obtaining
the correct form of the mapping function is essentially a
product of guesswork. Here, on the other hand, I use the
formalism of the Schwarz function [5] to give a more sys-
tematic (and more elegant) derivation of these solutions.
As we shall see below, in this approach, the mapping
function is related to the Schwarz function of the moving
interface. The exact form of this mapping function is
then obtained as a solution to an ordinary differential
equation satisfying additional symmetry requirements.

In the past few years, the Schwarz-function method
has become a useful analytical tool to treat Hele-Shaw
moving boundary problems [6]. In particular, this ap-
proach has been successful in constructing several new
[7,8] (and old [9]) solutions to the problem. In what fol-
lows, I will start with the standard mathematical formu-
lation of two-phase Hele-Shaw flows and briefly recall
how one recasts this problem in terms of the Schwarz
function of the moving interface. I will then proceed to
solve the problem in the case of the geometry studied in
Ref. [1].
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We consider the problem of a bubble moving with con-
stant velocity U along the x direction in a Hele-Shaw cell.
The fluid inside the bubble has a negligible viscosity and
is kept at constant pressure. The fluid outside the bubble
has a larger viscosity and is incompressible. The velocity
v(x,y) in the (viscous) fluid is given by Darcy’s law:

b 2
v 12 Vp=V¢, (1)

where b is the cell gap, u is the viscosity, p is the pres-
sure, and ¢ is the so-called velocity potential. As is stan-
dard in two-dimensional hydrodynamics, we introduce
the complex potential W(z)=¢(x,y)+i(x,y), where
z=x +iy and 9 is the stream function. The appropriate
complex potential in the frame moving with the bubble is
®=W —Uz. Let D denote the region occupied by the
fluid, and @ the fluid-bubble interface. Then ®(z) must
be an analytic function in the domain £ and satisfy the
following boundary conditions. The imaginary part of ®
on ¢ must be constant (chosen to be zero) to ensure that
the interface is a streamline of the flow. On the other
hand, the real part of ® on € is given by the jump in
pressure across the interface (the Gibbs-Thomson rela-
tion), so that

2

Red>=1b2—‘uﬂc—Ux +d, on @, @)
where k is the curvature of the interface and 7 is the sur-
face tension. Here ¢o=(b2/12u)p,, with p, being the
pressure inside the bubble. We assume furthermore that
the fluid velocity at infinity is a constant V in the x direc-
tion. This implies that

O=(V—U)z as |z| > . (3)

Now we reformulate the problem in terms of the
Schwarz function of the interface. This function is
defined as follows [5]: Suppose the curve € is given by
the relation F(x,y)=0 for some function F(x,y); the
Schwarz function of @, denoted by S(z), is obtained by
solving the equation F((z +Z)/2,(z —Z)/2i)=0 for Z in
the form Z=S(z). Geometrical properties of a curve can
be expressed in terms of its Schwarz function. For in-
stance, the angle 6 that the tangent to € at the point z,
makes with the real axis is given by [5]
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S'(zg)=e ", zy€C, 4)

where the prime indicates differentiation. The curvature
K, on the other hand, can be written as [5]

i ST
2 (sy7
Using Eq. (5) and the fact that x =[z +S5(z)]/2 on G, it

then follows from analytic continuation of Eq. (2) that
the complex potential can be written as

zZEQC . (5)

(=27 SN2 Ui i)+, . ©)

The following properties of the Schwarz function will
be of use later. Suppose that the unit circle in the § plane
is mapped onto curve € in the z plane by means of the
analytic function z = f(§), which is one-to-one conformal
in a neighborhood of @. Then [5]

1 1

4 f N2
Here f is the so-called conjugate function of f and is
defined as f(z)=f(Z), where the overbar (on the right-
hand side) stands for the complex conjugation. Hereafter
we will assume that € is symmetrical with respect to the
x axis, so that = f. We assume furthermore that S (z) is
analytic in the fluid domain D, so that the curvature term
in Eq. (6) is also analytic in . We then note that if «
does not change sign along @, i.e., the angle 0 is a mono-
tonic function of arclength, then according to Eq. (4) the
function

Sz)=f

=f 7N

1
t=¢g V=0
maps €@ one-to-one onto the unit circle (|£|=1) and D
conformally onto the exterior of the unit circle (|£|>1).
Now consider the inverse mapping

z=h()=g &) . 9)

It then follows form Egs. (7) and (8) that 4 ({) must satis-
fy the following compatibility condition:

1

4

We now seek solutions for the complex potential ® via
the ansatz

O(z)=(V—-U)[z+S(2)], (11)

' =h"({) . (10)

so that the interface € is, by construction, a streamline of
the flow. We also require that the Schwarz function S(z)
decay to a constant at infinity in order to satisfy Eq. (3).
According to Eq. (7) the solution for ® in terms of the
mapping function 4 (&) reads

1
¢
In order to solve for A(§) we first insert Eq. (11) into

Eq. (6). After some simplification, we obtain the follow-
ing ordinary differential equation for S:

O=(V—U) |h(E)+h (12)
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where L=[7b%/12u(2V —U)]'/? and R,=7/p, both
have dimensions of length. Here we assume that 2V > U,
so that 0<L < oo. (Note that if U =2V, one recovers the
circular bubble of radius R, [2].) Differentiating Eq. (13)
twice yields

Su__ZLZ[(__SI)—IZ]ru:O . (14)

z+S—2L?[(—8")"12)= , (13)

In view of Eq. (8), this can be expressed in terms of the
function g(z). One then finds

g'—L%g%""=0. (15)

Equation (15) can now be easily integrated to give im-
plicit solutions for g in the form

172
z=Lf

dg+C, (16)
where A4, B, and C are constants of integration. In order
to satisfy the compatibility condition (10) we must have
A =1. We fix C with an appropriate choice of the origin
and write the final solution for 4 as

172
Z—‘L— g, a7
£*+2al+1

g
Ag*+Bg+1

ne=c [°

where a is real parameter, so that 7 =h. Here we take
a > 1, in which case the singularities of the integrand lie
on the negative real semiaxis. The corresponding “physi-
cal domain” Q in the { plane is shown in Fig. 1. It will
be understood that at the lower limit, {= — 1, the square
root in the integrand takes the positive value and that it
is then varied continuously along a contour lying entirely
in Q to the upper limit {. We shall note that Eq. (17) cor-
responds exactly to the solution reported earlier by
Vasconcelos and Kadanoff [1]. [More precisely, their
mapping function H(w), see Eq. (5) of Ref. [1], is given
by H(w)=—ih(—w?), with k as in Eq. (17) above.]

(I
%

FIG. 1. The physical domain  in the § plane. Here §; and
&, are the singularities of the integrand in Eq. (17). The branch
cut at § <, corresponds to a constant-pressure inlet and the cut
at £> 1 to slip walls (see Fig. 2).
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It is perhaps worth mentioning that Eq. (13) can be
viewed as a ‘“complexified” version of the meniscus equa-
tion for equilibrium capillary surfaces [10]. In fact, on €,
Eq. (13) reduces to the standard meniscus equation
k=x/L? with “gravity” acting along the x axis and L
playing the role of the capillary length [10]. The solu-
tions given above correspond to two-dimensional sessile
drops [11]. This is illustrated in Fig. 2, where the solu-
tion for @ =1.1 is shown. Note, as already mentioned,
the presence of additional boundary conditions: slip
walls to which the bubbles are attached and a constant-
pressure inlet [1].

In closing, I would like to point out that it is not
surprising that the interface in our solutions does not
form a closed curve. For, as Millar [9] has shown, the
circle is the only solution for a single, closed bubble in an
unbounded Hele-Shaw cell with surface tension for which
the Schwarz function is analytic in the fluid domain, i.e.,
outside the bubble. It remains an open question whether
there exists a solution for which the Schwarz function
possesses singularities in the fluid region but the complex
potential is nevertheless analytic.

This work is an outgrowth of research conducted in
collaboration with Professor Leo Kadanoff. I would like
to thank him for introducing me to the subject and for
many enlightening discussions. I am grateful to Michael
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FIG. 2. The bubble solution (in the moving frame) for the
case a =1.1 and L =1. The dashed line indicates the constant-
presure inlet and the thick solid lines indicate the slip walls [1].
Also shown are some streamlines of the flow.
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